Structure of a Copper(I) Complex of a Tripodal Schiff-Base Ligand, \{Tris-[4-(2-thienyl)-3-aza-3-butenyl]amine\}copper(I) Triiodide Chloroform Solvate

By Elmer C. Alyea,* George Ferguson,* Michael C. Jennings and Zheng Xu
Department of Chemistry and Biochemistry, University of Guelph, Guelph, Ontario, Canada N1G 2W1

(Received 9 February 1990; accepted 22 March 1990)

Abstract

SC}_{4} \mathrm{H}_{3}\right) \mathrm{CHNCH}_{2} \mathrm{CH}_{2}\right\}_{3} \mathrm{NCu}\right]\left[\mathrm{I}_{3}\right] . \mathrm{CHCl}_{3}\), $\left[\mathrm{Cu}\left(\mathrm{C}_{21} \mathrm{H}_{24} \mathrm{~N}_{4} \mathrm{~S}_{3}\right) \mathrm{II}_{3} . \mathrm{CHCl}_{3}, M_{r}=992 \cdot 27\right.$, monoclinic, $C 2 / c, \quad a=31.869(11), \quad b=11.425(2), \quad c=$ $18 \cdot 215$ (4) $\AA, \beta=96 \cdot 56$ (2) ${ }^{\circ}, V=6589$ (5) $\AA^{3}, Z=8$, $D_{x}=2.00 \mathrm{~g} \mathrm{~cm}^{-3}, \quad F(000)=3776, \quad \lambda($ Мо $K \alpha)=$ $0.71073 \AA, \quad \mu=39.0 \mathrm{~cm}^{-1}, \quad R=0.027$ for 5020 observed reflections at 294 K . The copper(I) geometry is trigonal pyramidal, with coordination occurring from the apical tertiary amine N atom and the three azomethine N atoms of the tripodal Schiff-base ligand but not from the three thiophene moieties. Principal bond lengths and angles are $\mathrm{Cu}-$ N (ap.) $2 \cdot 275$ (3), $\mathrm{Cu}-\mathrm{N}($ eq.) $2 \cdot 004$ (3) \AA (av.) and $\mathrm{N}($ ap. $)-\mathrm{Cu}-\mathrm{N}(\mathrm{eq}) \quad .82.5(1)^{\circ} \quad$ (av.), $\quad \mathrm{N}(\mathrm{eq})-$ $\mathrm{Cu}-\mathrm{N}$ (eq.) 118.3 (1) ${ }^{\circ}$ (av.); the $\mathrm{Cu} \cdots \mathrm{S}$ contacts are $3 \cdot 162$ (1), $3 \cdot 268$ (1) and $3 \cdot 383$ (1) \AA.

Introduction. A previous molecular structure analysis of tris[4-(2-thienyl)-3-aza-3-butenyl]amine, (S_{3} tren), revealed its potential as a heptadentate tripodal ligand (Alyea, Liu, Li, Xu \& You, 1989). As part of metal complexation studies of this new Schiff-base ligand derived from tris(2-aminoethyl)amine (tren), we have reacted S_{3} tren with copper(II) salts (Alyea, $\mathrm{Li}, \mathrm{Xu} \& \mathrm{You}, 1990$). When excess NaI is added to a solution containing copper(II) acetate and S_{3} tren, and the solution exposed to air for several days, reduction occurs to give the Cu^{1} title complex, whose X-ray structural analysis is now reported.

Experimental. A ruby coloured multifaceted crystal having approximate dimensions $0.26 \times 0.52 \times$ 0.59 mm was selected from several similar crystals grown from a chloroform solution. Accurate cell dimensions and crystal orientation matrix were determined on a CAD-4 diffractometer by a leastsquares treatment of the setting angles of 25 reflections in the range $12<\theta<14^{\circ}$. Intensities of reflections with indices $h 0$ to $40, k 0$ to $14, l-23$ to 23 , with $2<2 \theta<52^{\circ}$ measured; $\omega-2 \theta$ scans, ω scan width $(0.60+0.35 \tan \theta)^{\circ}$; graphite-monochromatized

[^0]0108-2701/90/122347-03\$03.00

Mo $K \alpha$ radiation; intensities of three reflections measured every 2 h showed no evidence of crystal decay. 6570 reflections measured, 6454 unique ($R_{\text {int }}$ $0.018)$ and the 5020 with $I>3 \sigma(I)$ labelled observed and used in structure solution and refinement. Data corrected for Lorentz, polarization and absorption effects (max. and min. transmission coefficients 0.41 , $0 \cdot 20$). Space group $C 2 / c$ or $C c$ determined from the systematic absences ($h k l$ absent if $h+k=2 n+1 ; h 0 l$ absent if $l=2 n+1$) and $C 2 / c$ chosen and confirmed by successful refinement. The structure was solved by the Patterson heavy-atom method using SHELXS86 (Sheldrick, 1986) and subsequent difference syntheses. Refinement was by full-matrix least-squares calculations, initially with isotropic and then with anisotropic thermal parameters. At an intermediate stage in the refinement a difference map showed that there was chloroform of solvation trapped in the crystal lattice; there is one chloroform per molecule of the complex. In the final rounds of calculations H atoms were positioned on geometrical grounds (C-H $0.95 \AA$) and included in the structure factor calculations with an overall $B_{\text {iso }}$ of $5 \cdot 0 \AA^{2}$. The final cycle of refinement included 326 variable parameters, $R=0.027, w R=0.044$, goodness-of-fit $1.71, w=1 /$ $\left[\sigma^{2}\left(F_{o}\right)+0.025\left(F_{o}\right)^{2}\right]$. Max. shift/e.s.d. in final cycle 0.01 ; density in final difference map $\pm 0.65 \mathrm{e}^{-3}$ in the vicinity of the triiodide anion; there were no chemically significant features. Scattering factors and anomalous-dispersion corrections were taken from International Tables for X-ray Crystallography (1974, Vol. IV). All calculations were performed on a PDP1 1/73 computer using SDP-Plus (B. A. Frenz \& Associates, Inc., 1983). Atomic coordinates \dagger and details of molecular geometry are given in Tables 1 and 2. Fig. 1 is a view of the molecule prepared using ORTEPII (Johnson, 1976).

[^1]© 1990 International Union of Crystallography

Table 1. Positional and thermal parameters and their

	e.s.d.'s			
	x	y	z	$B\left(\AA^{2}\right)$
Cu	0.63429 (1)	0.97382 (4)	0.48258 (3)	$3 \cdot 190$ (9)
S(1)	0.54986 (4)	$1 \cdot 1262$ (1)	0.42317 (7)	$4 \cdot 50$ (2)
S(2)	0.57597 (4)	1.0297 (1)	0.60743 (7)	4.59 (2)
S(3)	$0 \cdot 55280$ (4)	0.7988 (1)	0.45719 (8)	$5 \cdot 72$ (3)
N(4)	0.7048 (1)	0.9647 (3)	0.4735 (2)	$3 \cdot 38$ (7)
N(1)	0.6458 (1)	$1 \cdot 1460$ (3)	0.4888 (2)	$3 \cdot 26$ (6)
N(2)	0.6502 (1)	0.8707 (3)	0.5707 (2)	$3 \cdot 39$ (7)
N(3)	0.6309 (1)	0.9004 (3)	0.3823 (2)	3.45 (7)
C(11)	$0 \cdot 7188$ (1)	1.0873 (4)	0.4777 (3)	3.91 (9)
C(12)	0.6904 (1)	$1 \cdot 1589$ (3)	0.5209 (3)	3.96 (9)
C(13)	0.6266 (1)	1.2375 (3)	0.4652 (2)	3.68 (8)
C(14)	0.5839 (1)	1.2430 (3)	0.4301 (2)	3.69 (8)
C(15)	0.5652 (2)	1.3386 (4)	0.3962 (4)	$6 \cdot 1$ (1)
C(16)	0.5230 (2)	1.3177 (5)	0.3656 (4)	6.6 (1)
C(17)	0.5117 (1)	1-2085 (5)	0.3763 (3)	$5 \cdot 5$ (1)
C(21)	0.7213 (1)	0.8929 (4)	0.5373 (2)	3.55 (8)
C(22)	0.6879 (1)	0.8065 (3)	0.5558 (2)	3.67 (8)
C(23)	0.6373 (1)	0.8579 (3)	0.6335 (2)	$3 \cdot 73$ (8)
C(24)	0.6032 (1)	0.9221 (4)	0.6591 (2)	$3 \cdot 59$ (8)
C(25)	0.5883 (1)	0.9091 (4)	0.7277 (2)	$4 \cdot 25$ (9)
C(26)	0.5558 (2)	0.9907 (5)	0.7368 (3)	$4 \cdot 8$ (1)
C(27)	0.5460 (2)	1.0593 (4)	0.6761 (3)	$5 \cdot 1$ (1)
C(31)	0.7072 (1)	0.9087 (4)	0.4009 (3)	4.07 (9)
C(32)	0.6682 (1)	0.9356 (4)	0.3486 (3)	4.08 (9)
C(33)	0.6067 (1)	0.8236 (4)	0.3475 (2)	3.97 (9)
C(34)	0.5702 (1)	0.7721 (4)	0.3733 (3)	4.09 (9)
C(35)	0.5446 (2)	0.6899 (4)	0.3348 (3)	$5 \cdot 4$ (1)
C(36)	0.5113 (2)	0.6501 (4)	0.3747 (4)	$6 \cdot 1$ (1)
C(37)	0.5119 (2)	0.7016 (5)	0.4404 (3)	$6 \cdot 1$ (1)
I(1)	$0 \cdot 24620$ (1)	0.16719 (4)	0.24032 (2)	6.353 (8)
I(2)	0.29255 (1)	0.35207 (2)	$0 \cdot 18078$ (2)	3.931 (6)
I(3)	0.33820 (1)	$0 \cdot 54905$ (2)	$0 \cdot 11865$ (2)	4.367 (6)
C	0.6297 (2)	0.4688 (4)	0.6650 (3)	$5 \cdot 3$ (1)
$\mathrm{Cl}(1)$	0.61026 (5)	0.3267 (1)	0.65267 (9)	6.73 (3)
$\mathrm{Cl}(2)$	0.65074 (7)	0.5148 (2)	0.5865 (1)	10.52 (5)
$\mathrm{Cl}(3)$	$0 \cdot 59007$ (6)	0.5628 (2)	0.6903 (1)	9.15 (5)

Anisotropically refined atoms are given in the form of the isotropic equivalent thermal parameter defined as: $B_{\text {eq }}=(4 / 3)\left[a^{2} B(1,1)+b^{2} B(2,2)+\right.$ $\left.c^{2} B(3,3)+a b(\cos \gamma) B(1,2)+a c(\cos \beta) B(1,3)+b c(\cos \alpha) B(2,3)\right]$.

Fig. 1. A general view of the cation with our numbering scheme. Ellipsoids are at the 50% level.

Discussion. The Cu^{I} geometry in the $\left[\left\{\left(\mathrm{SC}_{4} \mathrm{H}_{3}\right)\right.\right.$ $\left.\left.\mathrm{CHNCH}_{2} \mathrm{CH}_{2}\right\}_{3} \mathrm{NCu}\right]^{+}$cation is distorted trigonal pyramidal, with coordination occurring from the four N donor atoms. The $\mathrm{Cu}-\mathrm{N}(\mathrm{eq}$.) distances to the N atoms N1, N2, N3 are 2.002 (3), $2 \cdot 009$ (3) and 2.002 (3) \AA, respectively, with the $\mathrm{N}(1)-\mathrm{Cu}-\mathrm{N}(2)$, $\mathrm{N}(2)-\mathrm{Cu}-\mathrm{N}(3)$ and $\mathrm{N}(1)-\mathrm{Cu}-\mathrm{N}(3)$ angles being $120.2(1), 117.8(1)$ and $117 \cdot 0(1)^{\circ}$, respectively. The Cu atom sits $0 \cdot 2620(5) \AA$ above the plane of the equatorial azomethine N atoms, while the apical tertiary amine atom (N4) lies $2 \cdot 014$ (3) \AA below the

Table 2. Bond lengths (\AA) and bond angles $\left({ }^{\circ}\right)$

Cu	N(4)		2.275 (3)	C(13)	C(14)	1.438 (5)	
Cu	N(1)		2.002 (3)	C(14)	C(15)	$1.359(6)$	
Cu	$\mathrm{N}(2)$		2.009 (3)	C(15)	C(16)	1.414 (7)	
Cu	N(3)		2.002 (3)	C(16)	C(17)	1.319 (8)	
S(1)	C(14)		1.715 (4)	C(21)	C(22)	1.520 (6)	
S(1)	C(17)		1.689 (5)	C(23)	C(24)	1.433 (6)	
S(2)	C(24)		1.722 (4)	C(24)	C(25)	1.393 (6)	
S(2)	C(27)		1.694 (6)	C(25)	C(26)	1.419 (7)	
S(3)	C(34)		1.712 (5)	C(26)	C(27)	$1 \cdot 362$ (7)	
S(3)	C(37)		1.713 (5)	C(31)	C(32)	1.510 (6)	
N(4)	C(11)		1.469 (5)	C(33)	C(34)	1.431 (6)	
N(4)	C(21)		1.469 (5)	C(34)	C(35)	$1 \cdot 380$ (6)	
N(4)	C(31)		1.479 (6)	C(35)	C(36)	1.426 (8)	
N(1)	C(12)		1.482 (5)	C(36)	C(37)	1.331 (9)	
N(1)	C(13)		1.262 (5)	I(1)	I(2)	2.8610 (5)	
N(2)	C(22)		1.459 (5)	I(2)	I(3)	2.9729 (4)	
N(2)	C(23)		$1 \cdot 266$ (6)	C	$\mathrm{Cl}(1)$	1.744 (5)	
N(3)	C(32)		1-455 (6)	C	$\mathrm{Cl}(2)$	1.728 (6)	
N(3)	C(33)		$1 \cdot 286$ (5)	C	$\mathrm{Cl}(3)$	1.759 (6)	
C(11)	C(12)	$1 \cdot 506$ (6)					
N(4)	Cu	N(1)	82.7 (1)	S(1)	C(14)	C(15)	110.5 (3)
N(4)	Cu	N(2)	82.5 (1)	C(13)	C(14)	C(15)	$125 \cdot 6$ (4)
N(4)	Cu	N(3)	$82 \cdot 3$ (1)	C(14)	C(15)	C(16)	113.0 (4)
N(1)	Cu	N(2)	120.2 (1)	C(15)	C(16)	C(17)	111.4 (5)
N(1)	Cu	N(3)	117.0 (1)	S(1)	C(17)	C(16)	114.0 (4)
N(2)	Cu	N(3)	117.8 (1)	N(4)	C(21)	C(22)	109.9 (3)
C(14)	S(1)	C(17)	91.0 (2)	N(2)	C(22)	C(21)	$109 \cdot 2$ (3)
C(24)	S(2)	C(27)	91.7 (2)	N(2)	C(23)	C(24)	124.8 (4)
C(34)	S(3)	C(37)	92.4 (3)	S(2)	C(24)	C(23)	122.7 (3)
Cu	N(4)	C(11)	104.4 (2)	S(2)	C(24)	C(25)	111.4 (3)
Cu	N(4)	C(21)	$103 \cdot 7$ (2)	C(23)	C(24)	C(25)	125.9 (4)
Cu	N(4)	$\mathrm{C}(31)$	$103 \cdot 7$ (2)	C(24)	C(25)	C(26)	111.3 (4)
$\mathrm{Cl}(1)$	N(4)	C(21)	114.4 (3)	C(25)	C(26)	C(27)	112.7 (4)
$\mathrm{Cl}(1)$	N(4)	C(31)	114.3 (3)	S(2)	C(27)	C(26)	112.8 (4)
C(21)	N(4)	C(31)	$114 \cdot 5$ (3)	N(4)	C(31)	C(32)	110.7 (4)
Cu	N(1)	C(12)	106.4 (2)	N(3)	C(32)	$\mathrm{C}(3 \mathrm{I}) \quad 109.4$ (4)	
Cu	N(1)	C(13)	$135 \cdot 7$ (3)	N(3)	C(33)	C(34) 125.7 (4)	
C(12)	N(1)	C(13)	117.2 (3)	S(3)	C(34)	C(33) 125.3 (3)	
Cu	N(2)	C(22)	106.5 (3)	S(3)	C(34)	C(35) $\quad 110.0$ (4)	
Cu	N(2)	C(23)	$135 \cdot 3$ (3)	C(33)	C(34)	C(35) 124.7 (5)	
C(22)	N(2)	C(23)	117.9 (3)	C(34)	C(35)	$\mathrm{C}(36) \quad 112.9$ (5)	
Cu	N(3)	C(32)	107.9 (2)	C(35)	C(36)	$\mathrm{C}(37) \quad 112.4$ (5)	
Cu	N(3)	C(33)	134.6 (3)	S(3)	C(37)	C(36) 112.3 (4)	
C(32)	N(3)	C(33)	116.9 (4)	I(1)	I(2)	I(3) 178.13 (1)	
N(4)	C(11)	$\mathrm{C}(12)$	$110 \cdot 3$ (3)	$\mathrm{Cl}(1)$	C	$\mathrm{Cl}(2)$$\mathrm{Cl}(3)$	$110 \cdot 0$ (3)
N(1)	C(12)	C(11)	110.3 (3)	$\mathrm{Cl}(1)$	C		$110 \cdot 3$ (3)
N(1)	C(13)	C(14)	125.8 (4)	$\mathrm{Cl}(2)$	C	$\begin{aligned} & \mathrm{Cl}(3) \\ & \mathrm{Cl}(3) \end{aligned}$	112.9 (3)
S(1)	C(14)	C(13)	123.9 (3)				

plane. The $\mathrm{Cu}-\mathrm{N} 4$ distance is $2 \cdot 275$ (3) \AA and the $\mathrm{N} 4-\mathrm{Cu}-\mathrm{N}(1), \mathrm{N} 4-\mathrm{Cu}-\mathrm{N}(2)$ and $\mathrm{N} 4-\mathrm{Cu}-\mathrm{N}(3)$ angles are $82.7(1), 82 \cdot 5(1)$ and $82.3(1)^{\circ}$, respectively. These structural parameters are similar to those reported for the $[\mathrm{Cu}(\mathrm{pmas})]^{+}$cation, where pmas is the tripodal ligand $\mathrm{N}\left(\mathrm{CH}_{2} \mathrm{py}\right)\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{SR}\right)_{2}$: $\mathrm{Cu}-\mathrm{N}($ ap. $) \quad 2.158(8), \quad \mathrm{Cu}-\mathrm{N}($ py. $)=2.035(10) \AA$, and Cu is $0.077 \AA$ from the equatorial plane (Zubieta, Karlin \& Hayes, 1983). The coordination geometry adheres closely, as expected, to that recently found for the Cu^{I} complex of the related tripodal ligand, tris[4-phenyl-3-aza-3-butenyl]amine, (Ph_{3} tren) (Alyea, Ferguson, Jennings \& Xu, 1990). Principle dimensions for $\left[\left\{\left(\mathrm{C}_{6} \mathrm{H}_{5}\right) \mathrm{CHNCH}_{2} \mathrm{CH}_{2}\right\}_{3}-\right.$ $\mathrm{NCu}{ }^{+}$were $\mathrm{Cu}-\mathrm{N}(\mathrm{ap}) \quad .2 \cdot 232(2) \AA, \mathrm{Cu}-\mathrm{N}$ (eq.) 2.019 (2), 2.006 (2) and 2.004 (2) \AA, and $N($ ap. $)$ $\mathrm{Cu}-\mathrm{N}$ (eq.) 83.7 (1) to 84.6 (1).

The thiophene moieties do not coordinate to the Cu atom and the $\mathrm{Cu} \cdots \mathrm{S}$ distances of $3 \cdot 283$ (1), $3 \cdot 162$ (1) and $3 \cdot 268$ (1) \AA are close to the sum of the van der Waals radii ($3 \cdot 2 \AA$) (Bondi, 1964). In the free S_{3} tren molecule (Alyea et al., 1989), the dihedral
angles between the plane of the three S atoms and the plane of each thiophene ring are $91.4,88.7$ and 93.7°, respectively, as compared with $123.4,124.4$ and 119.7° in the complex. Bond distances and angles within the thiophene group of the title species, e.g. C-S 1.689 (5)-1.722 (4) \AA, C-S—C 91.0 (2)$92.4(3)^{\circ}$, are similar to those in the free S_{3} tren molecule.

The I_{3} anion has I-I bond distances of $2 \cdot 8610$ (5) and 2.9729 (4) \AA; the mean I-I distance in six I_{3}^{-} ions is 2.9717 (11) \AA (Allen, Kennard, Watson, Brammer, Orpen \& Taylor, 1987). The I-I-I angle is $178 \cdot 13(1)^{\circ}$. The chloroform solvate possesses no unusual features.

We thank NSERC Canada for Operating and Infrastructure Grants (ECA and GF), and for a CIDA Award (ZX).

References

Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. \& Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-S19.
Alyea, E. C., Ferguson, G., Jennings, M. C. \& Xu, Z. (1990). Polyhedron, 7, 739-741.
Alyea, E. C., Li, B., Xu, Z. \& You, X.Z. (1990). In preparation.
Alyea, E. C., Liu, S., Li, B., Xu, Z. \& You, X. Z. (1989). Acta Cryst. C45, 1566-1568.
B. A. Frenz \& Associates, Inc. (1983). SDP-Plus. College Station, Texas 77840, USA, and Enraf-Nonius, Delft, The Netherlands.
Bondi, A. (1964). J. Phys. Chem. 68, 441-451.
Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
Sheldrick, G. M. (1986). SHELXS86. Program for the solution of crystal structures. Univ. of Göttingen, Federal Republic of Germany.
Zubieta, J., Karlin, K. D. \& Hayes, J. C. (1983). In Copper coordination Chemistry: Biochemical and Inorganic Perspectives, edited by K. D. Karlin \& J. Zubieta, p.97. Guilderland, NY: Adenine Press.

Acta Cryst. (1990). C46, 2349-2351

Structure of trans-Dibromobis(5,7-dimethyl-8H-[1,2,4]triazolo[1,5-a]pyrimidine)palladium(II) Methanol Solvate

By R. Hage, R. A. G. de Graaff, J. G. Haasnoot,* K. Kieler and J. Reedijk
Department of Chemistry, Gorlaeus Laboratories, Leiden University, 2300 RA Leiden, The Netherlands

(Received 17 January 1990; accepted 19 April 1990)

Abstract

PdBr}_{2}\left(\mathrm{C}_{7} \mathrm{H}_{8} \mathrm{~N}_{4}\right)_{2}\right] \cdot \mathrm{CH}_{3} \mathrm{OH}, \quad M_{r}=594 \cdot 58\), triclinic, $\quad P \overline{1}, \quad a=9.153$ (4), $\quad b=8.858$ (5), $\quad c=$ 8.317 (3) $\AA, \quad \alpha=123.54$ (3),$\quad \beta=92.25$ (3),$\quad \gamma=$ $109.31(3)^{\circ}, V=508.9 \AA^{3}, Z=1, D_{x}=1.94, D_{m}=$ $1.93 \mathrm{Mg} \mathrm{m}^{-3}, \quad \lambda(\mathrm{Mo} K \alpha)=0.71073 \AA, \quad \mu=$ $4.811 \mathrm{~mm}^{-1}, \quad F(000)=288.0, \quad T=293 \mathrm{~K}, \quad R=0.035$ for 1474 unique reflections $[I>2 \sigma(I)$]. The two triazolopyrimidine ligands are coordinated to palladium via $\mathrm{N}(3)$ at a distance of 2.015 (4) \AA; the bromides are trans coordinated at a distance of 2.4196 (7) \AA, which is in the range expected for this type of complex.

Introduction. Square-planar palladium and platinum compounds are of interest in inorganic and organometallic chemistry. For example, the antitumour activity of cis- $\mathrm{Pt}\left(\mathrm{NH}_{3}\right)_{2} \mathrm{Cl}_{2}$ and related compounds has been studied extensively. It is observed that the platinum ion binds preferentially via $\mathbf{N}(7)$ of the guanine base in DNA (Reedijk, FichtingerSchepman, van Oosterom \& van der Putte, 1987).

[^2]0108-2701/90/122349-03\$03.00

Triazolopyrimidines are of interest because of their use as models for naturally occurring purines. Recently a systematic study concerning the coordination compounds of dimethyltriazolopyrimidine (dmtp) has been started in our laboratory (Favre, Haasnoot \& Reedijk, 1986; Biangini-Cingi, ManottiLanfredi, Tiripicchio, Haasnoot \& Reedijk, 1983; Dillen, Lenstra, Haasnoot \& Reedijk, 1983). Previous crystal structure determinations of metal compounds containing dmpt ligands have revealed that binding occurs only via $\mathrm{N}(3)$ of the ligand. We now investigate whether the same nitrogen atom coordinates to palladium, and compare this system with previously reported, related palladium compounds.

Experimental. Yellow crystals of $\left[\mathrm{PdBr}_{2}\left(\mathrm{C}_{7} \mathrm{H}_{8} \mathrm{~N}_{4}\right)_{2}\right]$.$\mathrm{CH}_{3} \mathrm{OH}$ were obtained after refluxing PdBr_{2} and dmtp ($1: 4$) in methanol (60 mL) for 3 h . A rodshaped single crystal was selected for the crystal structure determination. Experimental data for the compound are shown in Table 1. Analysis: Calculated for $\mathrm{C}_{15} \mathrm{H}_{20} \mathrm{Br}_{2} \mathrm{~N}_{8} \mathrm{OPd}$: C $30 \cdot 30$, H 3.39, N 18.85 , O 2.69%; found C $30 \cdot 56$, H $3 \cdot 34$, N $18 \cdot 80$, © 1990 International Union of Crystallography

[^0]: * To whom correspondence should be addressed. E-mail address: CHMFERG@VM.UOGUELPH.CA

[^1]: \dagger Lists of structure factors, anisotropic thermal parameters, least-squares planes, torsion angles and H -atom parameters have been deposited with the British Library Document Supply Centre as Supplementary Publication No. SUP 53153 (59 pp.). Copies may be obtained through The Technical Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

[^2]: * To whom correspondence should be addressed.

